Beverly Display Solutions

Module No.: BD028HDZ44

Revision : Ver 1.0

Customer	

Approved By	Date	Notes

	Rev	Issued Date	Description	Editor
	1.0	2011-12-23	Preliminary Specification Release	
1				
•				
•				
1				
1				

CONTENTS

No	ITEM	PAGE
1	General Description	4
2	Mechanical Specifications	4
3	Interface signals	6
4	Absolute Maximum Ratings	7
4.1	Electrical Maximum Ratings - FOR IC ONLY	7
4.2	Environmental Condition	7
5	Electrical Specifications	8
5.1	Typical Electrical Characteristics	8
5.2	Timing Characteristics	9
5.3	Power On/Off Sequence	11
6	Optical Characteristics (for panel only)	13
7	TFT Inspection Specifications	15
8	Packing demonstrate	17
9	PRECAUTIONS FOR LCM	18

1. General Description

• 2.8" QVGA, Normally Black, 262K Color, MVA TFT dot matrix LCD module.

Viewing Angle: 6 o'clock
Driving IC: HX8347G
Logic Voltage: 2.8V(Type)
Data Interface: RGB+ SPI

2. Mechanical Specifications

The mechanical detail is shown in Fig. 2 and summarized in Table 1 below.

Table 1

Parameter		Specifications	Unit
Outline dimensions		47.6(W) x 68.0(H) x 2.15(D)	mm
	Active area	43.2(W) x 57.6(H)	mm
Color TFT	Display format	240 x RGB x 320	dots
240xRGBx320	Color configuration	RGB stripe	-
Dot pitch		0.18 (RGB) (W) x 0.18(H)	mm
Weight		TBD	gram

Note 1: Viewing direction for best image quality is different from TFT definition. There is a 180 degree shift.

Note 2: Requirements on Environmental Protection: RoHS

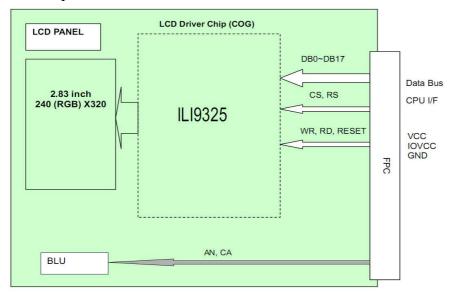


Figure 1: Block Diagram

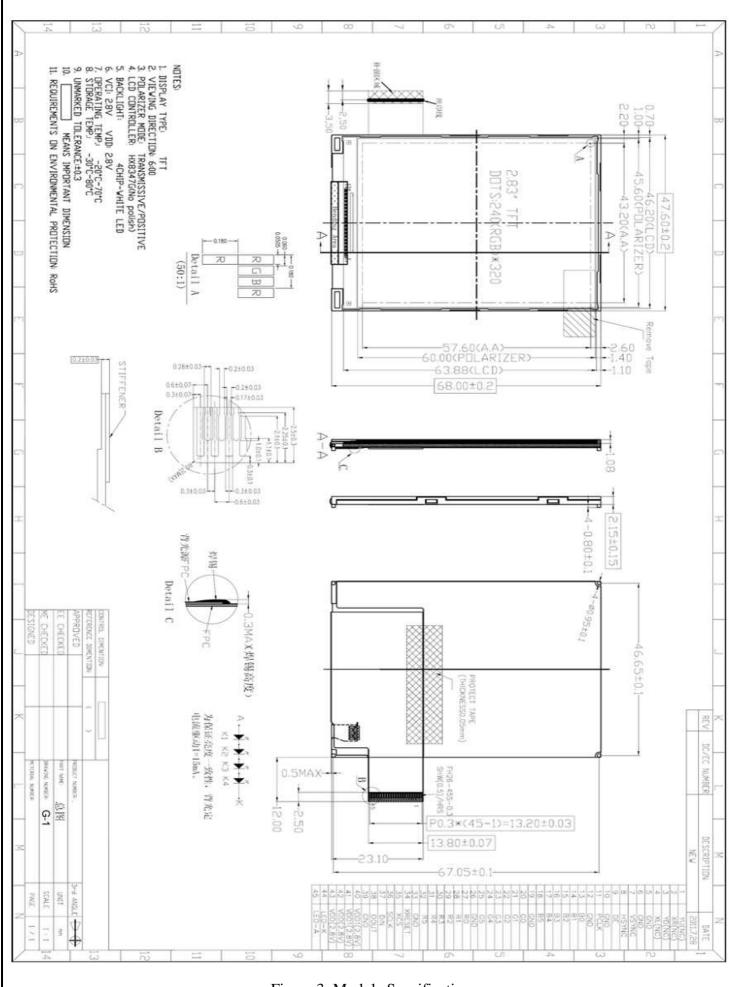


Figure 3: Module Specification

3. Interface Signals

Table 2: Pin assignment

Pin No.	Symbol	Description
1~4	NC	Dummy pin, Please let it float.
5,6	GND	Ground.
7	VSYNC	Vertical Synchronous Signal
8	HSYNC	Horizontal Synchronous Signal
9	ENB	Data Enable Signal
10	GND	Ground.
11	DCLK	Dot Data Clock
12	GND	Ground.
13~18	B0~B5	Blue Data bus.
19	GND	Ground.
20~25	G0~G5	Green Data bus.
26	GND	Ground.
27~32	R0~R5	Red Data bus.
33	GND	Ground.
34	RESET	Reset signal. Setting either pin low initializes the LSI. Must be reset after power is supplied.
35	CS	Chip select signal. Low: chip can be accessed, High: chip cannot be accessed. Must be connected to digital GND if not in use.
36	SCK	Serial Clock.
37	SDI	Serial Data In
38	SDO	Serial Data Out
39	GND	Ground.
40~43	VDD	Power supply to the liquid crystal power supply analog circuit. Connect to an external power supply.
44	LEDK	Cathode of LED backlight.
45	LEDA	Anode of LED backlight.

4. Absolute Maximum Ratings

4.1 Electrical Maximum Ratings – for IC Only

Table 3

Parameter	Symbol	Min.	Max.	Unit
Power supply voltage (VDD)	IOVCC	-0.3	+4.6	V
Power supply voltage (VDD)	VCC	-0.3	+4.6	V
Back Light Forward Current	IF		30	mA
Logic input voltage	VIN	-0.3	IOVCC+0.5	V
Logic output voltage	VOUT	-0.3	IOVCC+0.5	V

Note 1: GND = 0V.

Note2: No condensation allowed under any condition.

4.2 Environmental Condition

Table 4

Item	Operating temperature (Topr)		Storage temperature (Tstg) (Note 1)		Remark	
	Min.	Max.	Min.	Max.		
Ambient temperature(Ta)	-20°C	+70°C	-30°C	+80°C	Dry	
	90% max.					
Humidity (Note 1)	RH for Ta	$\leq 40^{\circ} \text{C} < 50\%$	ó		No condensation	
Tuillally (Note 1)	RH for 40°	No condensation				
	operating to					
Vibration(IEC 68-2-6)	Frequency:	$10 \sim 55 \text{ Hz}$				
cells must be mounted	Amplitude:	0.75 mm D	Ouration: 20 o	cycles in each	3 directions	
on a suitable connector	direction.					
	Pulse duration: 11 ms					
Shock (IEC 68-2-27) Half	Peak ac	3 directions				
-sine pulse shape	Number	5 directions				
	perpendicul		-	· J		

Note 1: Product cannot sustain at extreme storage conditions for long time.

5. Electrical Specifications

5.1 Typical Electrical Characteristics

At Ta = 25 °C, IOVCC=VCC=2.8.V, GND=0V.

Table 5

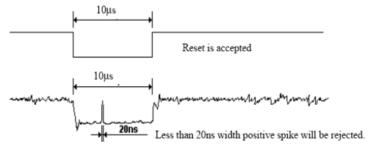
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply voltage	IOVCC		+1.65	+1.8	+3.3	V
Supply voltage	VCC		+2.4	+2.8	+3.3	V
Gate drive High voltage	VGH		-	-	-	V
Gate drive Low voltage	VGL		-	-	-	V
T	V_{IH}	"H" level	0.7IOV CC	-	IOVC C	V
Input signal voltage	V_{IL}	"L" level	VSSD	-	0.3IOV CC	V
Supply current	ICC+IVDD	IOVCC= +2.8V, Note1	-	3.8	15.0	mA
Suppry current	ICC+IVDD	VCC = +2.8V, Note 1	-	3.5	15.0	mA
Supply voltage of white LED backlight	VLED	Forward current =15mA(@25°C) Number of LED dies = 4	-	12.4	13.5	V

Note 1: Do not display the fixed pattern for a long time because it may develop image sticking due to the LCD structure. It should change pattern frequently. If the screen is displayed with fixed pattern, use a screen saver.

5.2 Timing Characteristics

5.2.1 Reset Timing Characteristics

At Ta = 25°C, GND=0V, IOVCC=VCC=2.8V.


Table 6

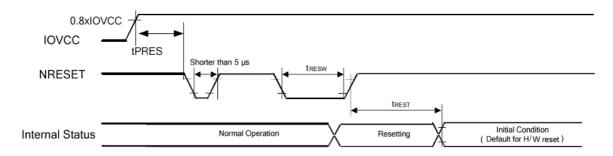
Symbol	Parameter	Related	Spec.			Note	Unit
Syllibol	raiailletei	Pins	Min. Typ. Max.		Note	Oilit	
tRESW	Reset low pulse width ⁽¹⁾	NRESET	10	-	-	-	μs
tREST Reset complete time ⁽²⁾		-	-	-	5	When reset applied during STB mode	ms
IKEST	Reset complete time	-		-	120	When reset applied during STB mode	ms
tPRES	Reset goes high level after Power on time	NRESET & IOVCC	1	-		Reset goes high level after Power on	ms

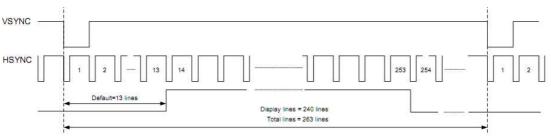
Note: (1) Spike due to an electrostatic discharge on NRESET line does not cause irregular system reset according to the table below.

NRESET Pulse	Action
Shorter than 5 μ	Reset Rejected
Longer than 10 μs	Reset
Between 5 μs and 10 μs	Reset Start

- (2) During the resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in STB Out –mode. The display remains the blank state in STB –mode) and then return to Default condition for H/W reset.
- (3) During Reset Complete Time, VMF value in OTP will be latched to internal register during this period. This loading is done every time when there is H/W reset complete time (tREST) within 5ms after a rising edge of NRESET.
- (4) Spike Rejection also applies during a valid reset pulse as shown below:

(5) It is necessary to wait 5msec after releasing !RES before sending commands. Also STB Out




Figure 3: Reset Input Timing

5.2.2 RGB Bus Interface Timing Characteristics

At Ta = 25°C, GND=0V, VDD=2.8V.

Table 7

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
CLK Clock Time	Tclk	-	-	35.7	ns	CLK=28MHz
CLK Pulse Duty	Tchw	40	50	60	%	Tclk
HSYNC to CLK	Thc	-	-	1	CLK	
HSYNC Width	Thwh	1	-	-	CLK	
VSYNC Width	Tvwh	1	-	-	Th	
HSYNC Period Time	Th	60.00	63.56	67.00	us	
VSYNC SetupTime	Tvst	12	-	-	ns	
VSYNC Hold Time	Tvhd	12	-	-	ns	
HSYNC Setup Time	Thst	12	-	-	ns	
HSYNC Hold Time	Thhd	12	-	-	ns	
Data Set-up Time	Tdsu	12	-	-	ns	D[23:00] to CLK
Data Hold Time	Tdhd	12	-	-	ns	D[23:00] to CLK
DEN Setup Time	Tesd	12	-	-	ns	DEN to CLK

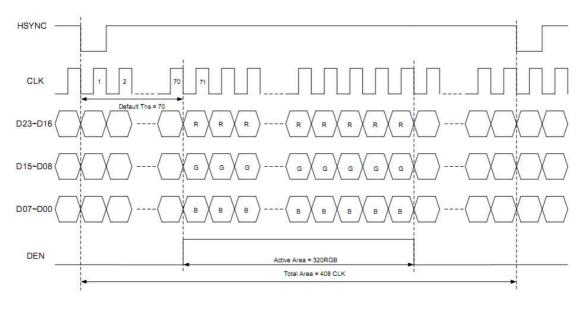


Figure 4: 24 Bit RGB Interface Characteristics

5.2.3 3 lines SPI Interface Timing Characteristics

At Ta = 25°C, GND=0V, VDD=2.8V.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Serial Clock	Tspck	320	-	-	ns	
SPCK Pulse Duty	Tscdut	40	50	60	%	
Serial Data Setup Time	Tisu	120	8		ns	
Serial Data Hold Time	Tihd	120	-	-	ns	
Serial Clock High/low	Tssw	120	¥	-	ns	
Chip Select Distinguish	Tcd	1	=		us	

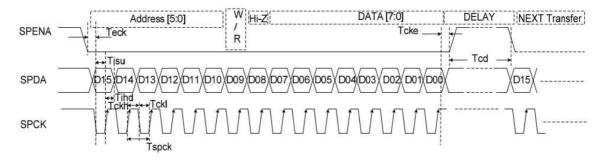


Figure 5: 3 Lines Interface Characteristics

5.2.4 DE Mode Interface Timing Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
CLK frequency	Fclk	14	24.54/27.00	120	MHz	VDD=3.0~3.6V
CLK cycle time	Tclk	-	40/37	-	ns	
Time that HSYNC to 1'st data input(PAL)	Ths	128	264	-	CLK	\$
Time that HSYNC to 1'st data input(NTSC)	Ths	128	244	.=((CLK	

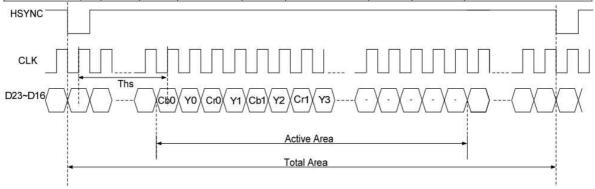


Figure 6: DE Mode Interface Characteristics

6. Optical Characteristics (for panel only)

Table 9: Optical characteristics

Items		Symbol	Condition		Min.	Typ.	Max.	Unit	Note
Response Ti	ime	$T_R + T_F$	Ta=25°C	Viewing normal angle $\theta = \phi = 0^{\circ}$	-	25	45	ms	(Note 1)
	12'	2			ı	60	-		
Viewing angle	6'	1	Ta=25°C	Center CR≥10	-	60	-	deg.	(Note 2)
viewing ungle	9'	2			-	60	-		
	3'	1			-	60	-		
Contrast Ratio		CR	Ta=25°C	Viewing normal angle $\theta = \phi = 0^{\circ}$	400	500	-	-	(Note 3)
Luminance (on the surface)	e module	Br	Ta=25°C		180	205	-	cd/m ²	
Transmittance		%			-	3.5	-	%	
	Red	x_R				0.591		-	
	Red	УR		Viewing normal angle θ=φ=0°		0.319		-	(Note 4)
	Green	XG				0.311		-	
Chromaticity		y_{G}	Ta=25°C			0.585		-	
	Blue	$\begin{array}{c c} x_B \\ \hline y_B \end{array}$				0.143		-	
						0.098		-	
	White	x_{W}				0.290		-	
	White					0.310		-	

Note 1: The electro-optical response time measurements shall be made as Figure 12 by switching the "data" input signal OFF and ON. The times needed for the luminance to change from 10% to 90% s $T_{\rm r}$, and 90% to 10% is $T_{\rm f}$.

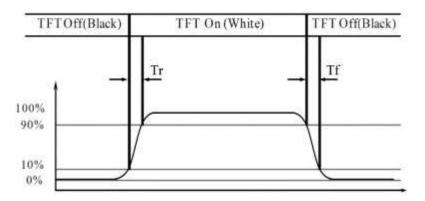


Figure 10: Response Time Testing

Note 2: The definitions of viewing angle.

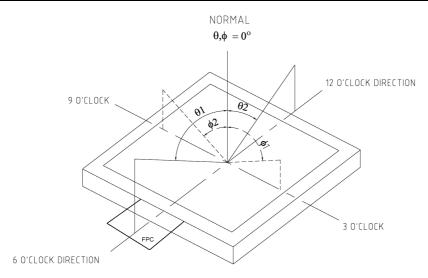


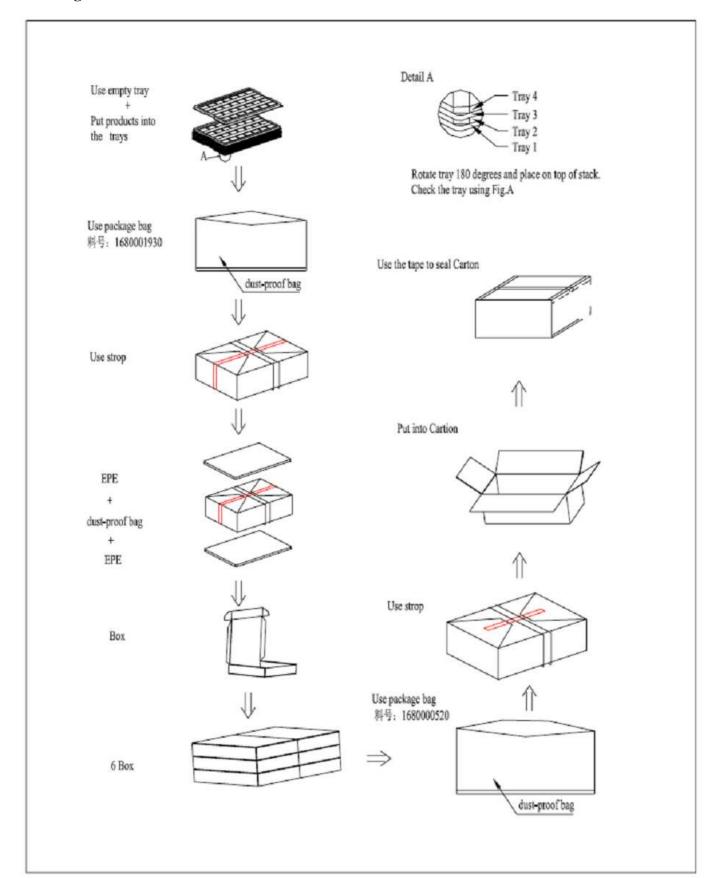
Figure 11

Note 3:Contrast measurements shall be made at viewing angle of θ =0° and at the center of the LCD surface by using DMS. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state. (See figure 11)

Luminace Contrast Ratio (CR) is defined mathematically.

CR = Luminance when displaying a white raster

Luminance when displaying a black raster


Note 4: The color chromaticity coordinates specified in Table 9 shall be updated from later actual spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel.

7. TFT Panel Inspection Specifications

Failure mode	Illustration	C	ntegory(Unit: mm)	Acceptable count			
ranure mode	Illustration	L.	iiogory(Omii. mm)	Viewing area	non-Viewing area		
	₩ ₩idth	A	Φ ≦ 0. 10	Not count			
Black spot White spot	Length	В	0. 10<Φ≦0. 15	2, The gap between the two spots should be 5 mm and above.	Not count		
		С	0. 15<Φ ≤ 0. 20	1			
	Φ = (Length+width)/2	D	0. 20< Φ	0			
Bright spot(Red spot,green spot and blue spot caused by damaged colour filter)		A	Area≦1 sub-pixel	1	N/A		
	, W	A	W ≤ 0.03	Not count	Not count		
Black line	$\bigvee^{\mathbf{W}}$	В	$0.03 \le 0.05, L \le 3.0$	2			
White line	L	С	0. 05 <w< td=""><td>Judged by spot</td><td></td></w<>	Judged by spot			
Below are cosn	netic inspection specifications						
Excess glass	**************************************	process.(Rei	s defect shall not affect marks: For COG process f LCD panel.)				
Excess glass		This defect shall not affect the outline dimension or assembly process.					
The depth of UV glue entered in LCD cell	D1 W D2	 a. D1≥0.2, not enter into viewing area b. D2≤0.8, c. W=End mouth width + (2~6 mm) 					

	① LCD ledge damage		Category				
	b b	A	The defect shall not affect the outline dimension of assembly process at non ITO zone.				
	W 2 C	В	b≤1/4w, a & c not count (at ITO zone)				
	t	С	Alignment mark on LCD ledge shall not be damaged.				
Glass defect(scratch			b can't reach inside of perimeter.				
③ Joint glass damage · 边框外沿(Inside of perimeter) · 边框外沿(Outside of perimeter)		b can't reach outside of perimeter or ITO layout.					
	4 Corner damage	A	$a \le t$, $b \le 3.0$, $c \le 3.0$				
w b c c		B. Alignment mark on LCD ledge shall not be damaged.					

8. Packing demonstrate

9. PRECAUTIONS FOR LCM

Beverly Display Solutions LCMs have been assembled and accurately calibrated before delivery. Please observe the following criteria when handling.

9.1 Static electricity warning

A. Do not take the LCM from its anti-static bag until it's to be assembled.

LCM's are individually packaged in bags specially treated to resist static electricity. When storing, keep the LCM packed in the original bags, or store them in a container processed to be resistant to static electricity, or in an electric conductive container.

B. Always use a ground strap when handling a LCM.

Always use a ground strap while working with the module, from the time it is taken out of the anti-static bag until it is assembled. If it is necessary to transfer the LCM, once it has been taken out of the bag, always place it in an electric conductive container. Avoid wearing clothes made of chemical fibers, the use of cotton or conductive treated fiber clothing is recommended.

C. Use a no-leak iron for soldering the LCM.

The soldering iron to be used for soldering the I/O terminals to the LCM are to be insulated or grounded at the iron tip.

D. Always ground electrical apparatuses required for assembly.

Electrical apparatuses required to assemble the LCM into a product, i.e. electrical screw drivers, are to be first grounded to avoid transmitting spike noises from the motor.

- E. Assure that the work bench is properly grounded.
- F. Peel off the LCM protective film slowly.

The module is attached with a film to protect the display surface from contamination, damage, adhesion of flux, etc. Peeling off this film abruptly could cause static electricity to be generated, so peel the tape slowly.

G. Pay attention to the humidity in the work area.

50~60% RH is recommended.

9.2 Precautions for the soldering of a LCM

The following procedures should be followed when soldering the LCM:

- A. Solder only to the I/O terminal.
- B. Use a no leakage soldering iron and pay particular attention to the following:
 - (1) Conditions for soldering I/O terminals

Temperature at iron tip: $280^{\circ}\text{C} + 10^{\circ}\text{C}$

Soldering time: 3~4 sec/terminal

Type of solder: Eutectic solder (rosin flux filled)

Note: (Avoid using flux, because it could penetrate the module and the module may get contaminated during cleaning.) Peel off protective film after soldering the I/O terminals. By following this procedure, the surface contamination caused by the dispersion of flux while soldering can be avoided.

(2) Removing the wiring

(When a lead wire, or a connector to the I/O terminal of the module is to be removed, remove it only after the solder at the connection has sufficiently melted since the I/O terminal is a through hole.) If it is forcefully removed, it could cause the terminal to break or peel. The recommended procedure is to use a suction-type solder remover. Caution: do not reheat the I/O terminal more than 3 times.

9.3 Long-term storage

If the correct method of storage is not followed, deterioration of the display material (polarizer) and oxidation of the I/O terminal plating may make the process of soldering difficult. Please comply with the following procedure.

- A. Store in the shipping container.
- B. If the shipping container is not available, place in anti-static bags and seal the opening.
- C. Store the modules where they are not subjected to direct sunlight or a fluorescent lamp.
- D. Store in a temperature range of 0° C 35 $^{\circ}$ C with low relative humidity.

9.4 Precautions in use of LCD modules

- A. Do not give any external shock.
- B. Do not wipe the surface with hard materials.
- C. Do not apply excessive force on the surface.
- D. Do not expose to direct sunlight or fluorescent light for a long time.
- E. Avoid storage in high temperature and high humidity.
- F. When storage for a long time at 40° C or higher is required, R/H should be less than 60%.
- G. Liquid in LCD is hazardous substance. Do not lick, swallow when the liquid is attached to your hands, skin, clothes etc. Wash it out thoroughly.